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Summary. The regioselective electrophilic addition of benzeneselenyl bromide to (-)-(lS,4S)-7~oxabicyclo/2.2.li- 

hept-S-en-2-one were exploited to develop efficient syntheses of methyl 3-deoxy-a-D-arabino-hexofuranoside and 

4-deoxy-D-lyxo-hexopyraose. Similarly, D-lividosamine (3-deoxy-D-glucosamine) was derived from (+)-(lR,4R)- 

7-oxabicyclo/2.2.llhept-S-en-Z-one. 

In a recent publication on the solvolysis of 3-oxobicyclo[2.2.2]oct-I-yl triflates, Takeuchi and Ynshida’ 

claimed to have discovered the first example of the through-bond interaction of the P-carbonyl lone pair with a 

cationic p orbital. Already in 1982, we reported* on the electrophilic additions of enones I that give exclusively 

adducts 5 under conditions of kinetic control. The results were interpreted in terms of electron-releasing 

homoconjugated carbonyl group (2 c--f 3 - 4) due to favourable n(CO)-cs(C(l),C(2))-K(6) hyperconjugative 

interactions that make 6-oxonorborn-2-yl cation more stable than _5-oxonorborn-2-yl cation derivativcs.3 We also 

found that an acyl group has a greater intrinsic (kinetic) migratory aptitude than an alkyl group in exothermic 

Wagner-Meerwein rearrangements due to the n(C0) electrons.” 

6 7 8 9 

z= CF I,, CH,-CH, X=Cl, OAc 

As expected on the basis of steric or/and electronic factors (favoured limiting structures 7 - 8) the additions 

of alkenes 6 (synthetic precursors of enones 1) to electrophiles E+Nu- gave the corresponding adducts 9 with 

opposite regioselectivity than additions 1 + E+Nu- + 5. This principle5 has been applied to the development of an 

efficient. total synthesis of L-daunosamine6 starting with the “naked sugar” 10.’ We wish to report here on the 

exploitation of the electron-releasing homoconjugated carbonyl group in the development of total syntheses of 

methyl 3-deoxy-D-arabinn-furanoside,* 4-deoxy-D-lyxo-pyranose” (Scheme 1) and D-lividosamine” (Scheme 2). 

Addition of PhSeBr (CH2C12, 0°~200C) to ((-)-12) derived from 11’ gave 13 (m.p. 72”C, [aI f$ = +34.5 (C = 

1.5, CH$&)) nearly quantitatively. Treatment with 55% mCPBA (CH,Cl,, 20°C, 4 h) afforded 14 (84%, oil, 
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to yield 25 (72%, oil, [a] g = -25 (c = 2.6, CH,Cl,?)). Reduction of 25 with DIBAH in toluene (-6YC) afforded 26 

(91%, oil, [a]~~~ = -40 (c = 1.88, CHC12CHC12)) which gave the unprotected pyranose 279 (96%, oil) by 

hydrogenolysis &/lo% Pd/C, MeOH, 2FC, 48 h). 27 was transformed into the known methyl pyranoside 289C 

(73%) by treatment with MeOH (Dowex 50 Wx8,6YC) and then with Me2C(OMe)$SnC1$IHF (20°C). 

D-Iividosamine13 (or 3-deoxy-D-glucosamine) is present in lividomycin-A and -B,14 and in 

3’-deoxykanamycin.15 We show here-below (Scheme 2) how (lR,4R)-7-oxabicyclo[2.2.l]hept-5-en-2-one ((+)-I21 

derived readily from furan and (lS)-camphanic acid’ can be converted into D-lividosamine (41) in 11% overall 

yield.lO 

Scheme 2 

29 30 31 R=3-ClC,H&O 32 

HO 
36 37 R=H 

38 R,R=Me$ 

Addition of PhSeCl to (+)-12 (CHCl,, O°C, 15 mi# gave 29 (m.p. 66-67”C, [or] g = -9.5 (c = 1, CH&l,) 

nearly quantitatively. Treatment of 29 with N-methyl-N-tertbutyldimethylsiIyltrifluoroacetamide’6 (DMF, Et,N, 

molecular sieves 4 A, 4OO”C, 15 h) gave 30 (95%, oil [a] 2 = -87 (c = 1, CH&l,)). Oxidation of 30 with 2.5 equiv. 

of anh. mCPBA (AcONa, anh. CH2C12, 0-2O”C, 30 min) led to 31 (69%, m.p. 97-98”C, [a]~‘~ = +111.2 (c = 1, 

CH2Cld). The process implies oxidative removal of the selenium, epoxidation of the enol ether, followed by ring 

opening of the corresponding epoxide intermediate induced by 3-ClC6H,C02H and acyl migration of the resulting 

adduct.17 Catalytical hydrogenation (10% Pd/C, Na2C03, AcOEt, 2O*C) of the chloroalkene 31 afforded 32 (89%). 

Treatment with mCPBA (NaHC03, CH,Cl,, 2O”C, 66 h) led to lactone 33 (798, m.p. 160-161°C [al 26 = -57.4 (c 

= 1, CH&l$. Alkaline methanolysis (anh. MeOH, K,C03, 20°C, 1 h) of 33 gave a mixture of a- and P-furanose 34 

which was oxidized with 85% mCPBA (MeOH, 2O”C, 3 h) to yield 35 (95.6%, oil, Ia] E = - 15.7 (c = 1, 

CHyOH)). Reduction of 35, with 2 M LiBH, in THF (20°C), followed by treatment with 1 N aq. HCl (40°C) gave 

1,4-manno-lactone 37 (oil) which was protected as its 5,6-O-isopropylidene derivatives 38 (52% based on 35, oil, 

la1 :: = +4.5 (c = 1, CH&Y,)) with Me$(OMe)z/SnC12/dioxane (5O”C, 4 h). Reaction of 38 with Bu~NN, in ‘IFIF 

(20°C 15 h) afforded the known azide 39 (m.p. 60-61”C).1s Reduction of 39 with DIBAH toluene (-78”C, 1 h), led 

to a mixture of a- and P-ribofuranose 40 (98%) which was then hydrogenated (HZ, 10% Pd/C, 1 N aq. HCl, 20°C, 4 

h) into the hydrochloride of D-lividosamine (41.HC1, 94%). 41 was characterized as its methyl N-acetyl-4,6-0- 

diacetyl-a-D-lividosaminide 42.‘o,19Y2o 
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Our results make use of the electron-releasing carbonyl function and present new applications of our “naked 

sugars” to the total syntheses of rare sugars. Compared with classical synthetic methods using carbohydrates as 

starting material,*~tO our approach presents certain advantages: a) both enantiomers of a targeted compound can be 

attained with the same ease as both (+)- and (~)-7-oxabicyclo[2.2.l]hept-_5-en-2-one are available, the chiral 

auxiliaries (lS)- and (lR)-camphanic acids, respectively, are recovered at an early stage of the synthesis; b) 

protected or partially protected polyfunctionnal molecules with different protective groups can be obtained 

selectively; c) these intermediates are potential precursors for the preparation of several natural products or 

compounds of biological interest2r 
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